Directions: Show all work. Box your final answer.

1) Calculate the equilibrium constant, Kneut for the neutralization of hydrocyanic acid by ammonia: $\quad \underline{0.72}$
$\mathrm{HCN}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \Leftrightarrow \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})$
K_{a} for hydrocyanic acid $=4.0 \times 10^{-10}$ at $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{b}}$ for ammonia $=1.8 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$
2) If exactly 50 mL of a 0.050 M solution of hydrochloric acid is added to exactly 50 mL of 0.050 M ammonia, what is the pH of the resulting solution? $\quad 5.43$
3) a) What is the pH of 100 mL of pure water at $25^{\circ} \mathrm{C}$? Use the Kw to show how this is true. $\underline{7.0}$
b) What would the pH of this 100 mL water sample be if 0.10 mL of 12 M HCl was added to it? (Assume the volume doesn't change). 1.962

Dougherty Valley HS Chemistry - AP
Acid Base - Study Questions 2
c) Calculate the pH of a buffer solution composed of 0.20 M ammonia and 0.20 M ammonium chloride. 9.26
d) Calculate the pH of 100 mL of this buffer solution if 0.10 mL of 12 M hydrochloric acid is added to it. (Assume the volume doesn't change). 9.2
4) A solution contains $\mathrm{KH}_{2} \mathrm{PO}_{4}$ and $\mathrm{K}_{2} \mathrm{HPO}_{4}$ and has a pH of 7.10 . What is the mole ratio of $\mathrm{K}_{2} \mathrm{HPO}_{4}$ to $\mathrm{KH}_{2} \mathrm{PO}_{4}$? $\mathrm{Ka}=6.17 \times 10^{-8} \quad \underline{0.776: 1}$

